
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #7 Key

Problem 1. Consider the biharmonic operator P (x,D) = ∆2 = ∆∆ in a smooth domain
Ω ⊂ Rd, d ≥ 2 together with the boundary conditions

B1u = u , B2u =
∂u

∂n
, B3 = ∆ , B4 =

∂

∂n
∆ .

a.) Show that exactly two scalar boundary conditions are needed in order to obtain a
well-posed boundary value problem.

Solution. Note that P (x, ξ + in(x)λ) = [(ξ + in(x)λ) · (ξ + in(x)λ)2 for x ∈ ∂Ω and
ξ ⊥ n(x), ξ 6= 0. The polynomial equation P (x, ξ + in(x)λ) = 0 has exactly two zeros
with negative real part. Hence there are two linearly independent bounded solutions to
the ordinary differential equation

(1) P

(
x, ξ + in(x)

d

dy

)
Φ(y) = 0

on the interval [0,∞). Hence, one needs two initial condition in order to possibly solve
the initial value problem uniquely. This translates into the need of two scalar boundary
conditions.

b.) Which pairs of boundary conditions satisfy the Lopatinskii condition and which do
not ?

Solution. The zeros of the polynomial equation

0 = [(ξ + in(x)λ) · (ξ + in(x)λ)2 = [|ξ|2 − λ2]2

are λ = ±|ξ|. Note that both roots are repeated roots, that is roots with multiplicity two.
Hence, any bounded solution on the interval [0,∞) is of the form

Φ(y) = C1e
−y|ξ| + C2ye

−y|ξ|

Compute

B1

(
ξ + in(x)

d

dy

)
Φ(0) = Φ(0) = C1

B2

(
ξ + in(x)

d

dy

)
Φ(0) = n(x) ·

(
ξ + in(x)

d

dy

)
Φ(0) = iΦ′(0) = i[−C1|ξ|+ C2]

B3

(
ξ + in(x)

d

dy

)
Φ(0) = |ξ|2Φ(0)− Φ′′(0) = C1|ξ|2 − [C1|ξ|2 − 2C2|ξ|] = 2C2|ξ|

B4

(
ξ + in(x)

d

dy

)
Φ(0) = i|ξ|2Φ′(0)− iΦ′′′(0) = i[−C1|ξ|3 + C2|ξ|2 + C1|ξ|3 − 3C2|ξ|2]

= −i2C2|ξ|2
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According to part a.), the only way to satisfy the Lopatinskii condition is to use two scalar
boundary condition. Hence, the unique solvability of the IVP for the ODE (1) reduces to
the question of uniqueness in the case of two homogeneous boundary conditions at y = 0.
B1, B2: If Φ(0) = Φ′(0) = 0, then C1 = 0 and C2 = 0 and the only solution is Φ(y) ≡ 0.
B1, B3: If Φ(0) = 0 and |ξ|2Φ(0)− Φ′′(0) = 0, then C1 = 0 and also C2 = 0 since ξ 6= 0.
B1, B4: If Φ(0) = 0 and |ξ|2Φ′(0)− Φ′′′(0) = 0, the C1 = 0 and C2 = 0.
B2, B3: If Φ′(0) = 0, then C2 = C1|ξ|. If, in addition |ξ|2Φ(0) − Φ′′(0) = 0, then C2 = 0
which gives also C1 = 0.
B2, B4: If Φ′(0) = 0 and, in addition, |ξ|2Φ′(0)− Φ′′′(0) = 0, then C2 = 0 and because of
C1|ξ| = C2, C1 must vanish as well.
B3, B4: If |ξ|2Φ(0)−Φ′′(0) = 0, then C2 = 0 and the condition |ξ|2Φ′(0)−Φ′′′(0) = 0 does
not do anything to C1. Hence, in this case the Lopatinskii condition does not hold.

Problem 2. Let P (x, ξ) be a scalar elliptic operator of order m on a smooth domain
Ω ⊂ Rd and suppose d ≥ 3. Then for all x ∈ ∂Ω and ξ ⊥ n(x), ξ 6= 0 we have the
factorization Pm(x, ξ+ iλn(x)) = P+(x, ξ, λ)P−(x, ξ, λ) where the polynomial P+ has only
roots with positive real part in λ and the polynomial P− has only roots with negative real
part in λ. (One can show that the the polynomials P+ and P− can be chosen to have
smooth coefficients.) Let B1, ..., Bl be l scalar boundary conditions where l = degP−.

a.) Using the fact that the zeros of P are continuous functions of (x, ξ), show that l is
independent of (x, ξ). Here the condition d ≥ 3 is important.

Solution. We will make the additional assumption that ∂Ω is connected. This assumption
may not be necessary, however, it will simplify the proof and makes us avoid certain
topological consideration. Without loss of generality we will assume that

Pm(x, ξ + iλn(x)) = λm +
m∑
j=0

aj(x, ξ)λ
j .

Otherwise, we divide by the leading coefficient of the polynomial which is cannot vanish
since P is elliptic.

Fix (x, ξ) with x ∈ ∂Ω and ξ 6= 0, ξ ⊥ n(x), the polynomial Pm(x, ξ + iλn(x)) has
l zeros λj, j = 1, ..., l with negative real part and m − l zeros λj, j = l + 1, ...,m with
positive real part. This follows from the fundamental theorem of algebra and from the
ellipticity condition. Hence we can write

Pm(x, ξ + iλn(x)) =
m∏
j=1

(λ− λj) = P−(λ)P+(λ)

where P−(λ) =
∏l

j=1(λ − λj) and P+(λ) =
∏m

j=l+1(λ − λj). This procedure can be

performed at any point (x, ξ) ∈ ∂Ω× Rd \ {0} with ξ ⊥ n(x). Hence

Pm(x, ξ + iλn(x)) =
m∏
j=1

(λ− λj(x, ξ))

Since the roots λj are continuous functions of (x, ξ) which cannot be purely imaginary
and the set

W = {(x, ξ) ∈ ∂Ω× Rd \ {0} : ξ ⊥ n(x)}
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is connected because of d ≥ 3, no root λj with <λj > 0 for some (x, ξ) ∈ W can have
negative real part at another point in W . Hence, the number l is independent of the
choice of (x, ξ) ∈ W .

To understand why W is connected it is important to understand that for a given
x ∈ ∂Ω the set {ξ : ξ 6= 0 and ξ ⊥ n(x} is of dimension d − 1. If d = 2, this is a
punctured straight line (that is a line with one point removed) and hence not connected.
On the other hand, a punctured plane is connected.

b.) Show that the Lopatinskii condition of Definition 2.5.8 is equivalent to the following
condition. The polynomials

Bj(x, ξ + iλn(x)) , j = 1, 2, .., l

are a basis of C[λ]/P−(x, ξ, λ) for all ξ ⊥ n(x), ξ 6= 0. Here C[λ] denotes the ring of
polynomials with complex coefficients in λ and C[λ]/P−(x, ξ, λ) is the quotient ring of
C[λ] by the ideal generated by P−(x, ξ, λ).

Solution. Note that the quotien ring C[λ]/P−(x, ξ, λ) is isomorphic to the ring of poly-
nomials with complex coefficients of degree less or equal to l − 1. A basis of this ring is
given by the monomials 1, λ, ..., λd−1. The bounded solutions of

Pm (x, ξ + iλn(x)) Φ(y) = 0

is the solution set to the differential equation

P−

(
x, ξ,

d

dy

)
Φ(y) = 0 .

Since degP− = l, the solution space is l dimensional. In order to determine a solution
uniquely, one will need initial conditions for the first l − 1 derivatives. The l boundary
conditions

Bj

(
x, ξ + in(x)

d

dy

)
Φ(0) , j = 1, 2, ..., l ,

determine the first l − 1 derivatives of Φ at zero if the polynomials Bj(x, ξ + iλn(x)),
j = 1, .., l are linearly independent and are of degree less than l. However, if a certain
Bj(x, ξ + iλn(x)) has degree greater than l − 1, one has

Bj(x, ξ + iλn(x)) = Qj(x, ξ, λ)P−(x, ξ + in(x)λ) +Rj(x, ξ, λ) ,

where Rj is a polynomial in λ of degree less than l. Observe that since Φ solves the
differential equation above, one has

Bj

(
x, ξ + in(x)

d

dy

)
Φ(0) = Rj

(
x, ξ,

d

dy

)
Φ(0) .

This step shows that the Lopatinskii condition is satisfied if and only if the polynomail
Rj(x, ξ, λ) form a basis of the ring of polynomials of degree less than l. This finishes the
proof since Rj is the representant of Bj ∈ C[λ]/P−(x, ξ, λ) in the ring of polynomials of
degree less than l.

Problem 3. Consider the boundary value problem

P (∂)u =

[
∇× v +∇w
−∇ · v

]
= f in Ω ⊂ R3 ,

n× v = g in ∂Ω .
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Here u =

[
v
w

]
is a vector-valued function with four components, v is a vector-valued

function with three components, and the function w is scalar-valued.

a.) Use the Divergence Theorem (Gauss’s Theorem) to find an integration by parts formula
for the curl operator. To be more precise, the task is to express the integral∫

Ω

(∇× v) · q dx

where v and q are smooth vector-valued function with three components each, by integrals
which do not contain any derivative of v.

Solution. Note that ∇ · (v× q) = (∇× v) · q− v · (∇× q). Hence, using Gauss’s Theorem
gives ∫

Ω

(∇× v) · q dx =

∫
Ω

v · (∇× q) dx+

∫
∂Ω

n · (v × q) ds .

The boundary integral may be written as∫
∂Ω

(n× v) · q ds = −
∫
∂Ω

v · (n× q) ds .

b.) Define an unbounded operator P : L2(Ω)4 → L2(Ω)4 with

D(P) = {u ∈ H1(Ω)4 : n× v = 0 in ∂Ω}
and Pu = P (∂)u. Find the (Hilbert space) adjoint P∗ in the sense of unbounded
operators. Recall that

D(P∗) = {y ∈ L2(Ω)4 : u 7→ (Pu, y) is a bounded linear functional on D(P)} .
Solution. For u, y ∈ H1(Ω)4 compute using part a.) and the Divergence Theorem

(P (∂)u, y) =

∫
Ω

(∇× v) · q dx+

∫
Ω

∇w · q dx−
∫

Ω

(∇ · u)z dx

=

∫
Ω

v · (∇× q) dx+

∫
Ω

u · ∇z dx−
∫

Ω

w∇q dx

+

∫
∂Ω

(n× u) · q ds+

∫
∂Ω

w n · q ds−
∫
∂Ω

n · u z ds

=(u, P (∂)y) + +

∫
∂Ω

(n× u) · q ds+

∫
∂Ω

w n · q ds−
∫
∂Ω

n · u z ds ,

where we write y = (q, z)T similar to u = (v, w)T . Hence, the only way to obtain the
estimate in the definition for the dual is that y ∈ L2(Ω)4, P (∂)y ∈ L2(Ω)4, and that
z = n · y = 0 in ∂Ω. According to Corollary 2.8.3. this means that y ∈ H1(Ω)4 since
the boundary conditions B1y = n · y, B2y = z satisfy the Lopatinskii condition. This has
been verified in last weeks homework. Hence,

D(P∗) = {y ∈ H1(Ω)4 : z = n · y = 0 in ∂Ω}
and P∗y = P (∂)y. The unbounded operator P is not self adjoint.

c.) Suppose that Ω is simply connected. Find kerT and coker T where T is the operator
is the continuous linear operator T : Hk+1(Ω)4 → Hk(Ω)4 ×H1/2+k(∂Ω)3 defined by

Tu =
(
P (∂)u, n× v

∣∣∣
∂Ω

)
.
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Solution. Note that n×v|∂Ω is a tangential vector field. Indeed n ·(n×v) = v ·(n×n) = 0.
Hence, the operator T should be defined as an operator from Hk+1(Ω)4 into Hk(Ω)4 ×
H

1/2+k
t (∂Ω)3 where H

1/2+k
t (∂Ω)3 denotes the tangential vector fields on ∂Ω, that is

H
1/2+k
t (∂Ω)3 = {v ∈ H1/2+k(∂Ω)3 : n · v = 0 in ∂Ω}

From Corollary 2.6.9 we know that u ∈ kerT implies u ∈ C∞(Ω). In addition, the linear
operator T is certainly injective in its second component. Hence, it will suffice to study
ker P. Taking the curl of the first (vector) equation gives

∇× (∇× v) +∇×∇w = 0

which because of ∇ × ∇w = 0 implies ∇ × (∇ × v) = 0. Then, using part a.) and the
boundary condition n× v = 0 gives

0 =

∫
Ω

∇× (∇× v) · v dx =

∫
Ω

|∇ × v|2 dx

and thus ∇ × v = 0. Since Ω is simply connected we have v = ∇p for some smooth
scalar-valued function p. Furthermore, the boundary condition n× v = 0 gives n×∇p =
which means that the tangential gradient of p vanishes on ∂Ω. This can happen only inf
p is constant on each connected component ∂Ωj (j = 1, .., r) of the boundary.

Example. If Ω = B(0, 2) \ B(0, 1) where B(x,R) is the open ball centered at x with
radius R, then Ω is simply connected and ∂Ω has two connected components, ∂Ω1 =
∂B(0, 2) and ∂Ω2 = ∂B(0, 1).

Furthermore, since ∇ · (∇× v) = 0 in we obtain also ∇ ·∇p = ∆p = 0. Hence, p is the
solution to the following boundary value problem for the Laplace equation

(2) ∆p = 0 in Ω , p = cj on Ωj , j = 1, ..., r .

claim. The solution space of this problem has dimension r.

Proof. Each solution to the boundary value problem for p can be written as a linear
combination of r linearly independent function pj which are given as unique solutions to
the Dirichlet problem

∆pj = 0 in Ω , pj = 1 on ∂Ωj and pj = 0 on ∂Ωk for k 6= j .

One verifies that p =
∑r

j=1 cjpj solves the problem (2). �

Since ∇× v = 0 we also have that ∇w = 0 which shows that w must be constant. A
basis of kerT is given by the vectors uj = (∇pj, 1)T ∈ C∞(Ω)4 for j = 1, 2, ..., r. This
proves dim kerT = r where r is the number of connected components on ∂Ω.

To determine the cokernel of T , note that T is surjective in its second component.
Hence, it will suffice to study the cokernel of P which is isomorphic to the orthogonal
complement of the range of P which in turn is the same as the kernel of P∗. This is
done as follows. Suppose that y = (q, z)T ∈P∗, that is

∇× y +∇z = 0, ∇ · y = 0 in Ω , n · y = z = 0 in ∂Ω .

Applying the divergence to the first vector equation gives ∆z = 0 which together with
the boundary condition results in z ≡ 0 in Ω. Then ∇× y = 0 which gives again y = ∇p
for some smooth scalar-valued p and the equation ∇ · y = 0 gives ∆p = 0 and the first
boundary condition provides n · ∇p = 0. Since Ω is simply connected, we conclude that p
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has to be constant which results in v = 0. Hence, ker P∗ = {0} and hence, the operator
T is surjective.

Observe that the operator T has the following interesting property: The index of T is
equal to the number of connected components of the boundary of Ω. The index of the
operator describes topological properties of Ω. The assumption that Ω is simply connected
can be removed but it will change the index of the operator. The kernel and the cokernel
of the operator T are known to be isomorphic to the cohomology spaces for differential
forms.

d.) Use your answer of c.) to describe the solvability of the boundary value problem above.
In particular, answer the following question. Is the boundary value problem solvable for
all f ∈ L2(Ω)4 and g ∈ H1/2(∂Ω)3 ? Is the solution unique ? What regularity does the
solution posses ? If the data are more regular, say f ∈ Hk(Ω)4 and g ∈ Hk+1/2(∂Ω)3

where k is a positive integer, what can you say about the solution ?
The work in part c.) shows that the boundary value problem has solutions for all

f ∈ L2(Ω)4 and g ∈ H1/2(∂Ω)3. However, the solutions are not unique. To every solution
we can add an element from kerT . In order to produce a unique solution one has to
restrict the solution space to the quotient space

H1(Ω)/ kerT ≈ (kerT )⊥ = {u ∈ H1(Ω) : (u, U)Ω = 0 for all U ∈ kerT} .
For more regular data, say f ∈ Hk(Ω)4 and g ∈ Hk+1/2(∂Ω)3, one obtains a unique
solution in the linear space

{u ∈ Hk(Ω) : (u, U)Ω = 0 for all U ∈ kerT} .


